mes6@njit.edu

Disclaimer : This website is going to be used for Academic Research Purposes.

Canonical Correlation Analysis Canonical Correlation Analysis (CCA) is a multivariate statistical technique used to uncover the linear relationship between two sets of variables. It is used to explore the correlation between two or more sets of variates and identify which variates contribute most highly to the correlation among all variables. CCA seeks to maximize the correlation between two sets of variables by transforming them into canonical variates. Canonical variates are obtained through a series of mathematical operations involving the principal component analysis (PCA) of each set of data points. By analyzing both sets simultaneously, CCA can pinpoint relationships between them that may be missed when studying either one in isolation.

### Procedure of Performing Canonical Correlation Analysis

The procedure for performing CCA involves three steps: first, perform PCA on each set of data points; then use the resulting eigenvalues and eigenvectors to calculate the canonical correlations; lastly, examine and interpret the results.

### Calculation of CCA

To calculate the canonical correlations, we must first calculate what is known as the canonical variate matrix (CVM). This matrix contains information about how much each variable contributes to its respective set’s correlation with its partner set’s variance. After obtaining this matrix, we can compute a number of measures such as redundancy ratios, partial correlations, and multiple R-squared values that tell us how much variation in each set can be explained by its partner set.  Once we have calculated our correlations and examined their significance via statistical tests, we can then interpret our results by examining which variables are most highly correlated with each other across both sets. We can also look at how much they contribute to explaining common variation in either or both datasets. By understanding these relationships we gain insight into how different factors interact in an area of study and can use this information to make informed decisions regarding further research or applications requiring knowledge about particular associations or effects.